THE PREPARATION AND DIELS-ALDER REACTIVITY OF ETHYL (DIETHOXYPHOSPHINYL)PROPYNOATE

Roger G. Hall and Stuart Trippett*

Department of Chemistry, The University, Leicester, LE1 7RH

Summary Ethyl (diethoxyphosphinyl) propynoate has been prepared. It is a highly reactive and regiospecific dienophile.

We are interested in the synthesis of aromatic and heterocyclic phosphonates by cyclo-addition reactions. To this end ethyl (diethoxyphosphinyl)propynoate (2) has been prepared and its dienophilic activity investigated.

Br
$$C=C$$
 $E=C$
 $C=C$
 $C=C$

Triethyl phosphite and ethyl Z-2,3-dibromopropenoate at 100 °C gave the phosphonate ($\frac{1}{2}$; 58%); this with triethylamine in refluxing ether gave ($\frac{2}{2}$; 73%), b.p. 128-130 °C at 0.1 mmHg 31 p -10.9 ppm, which showed no acetylenic absorption in the infra-red but absorption at 2213 cm⁻¹ in the Raman spectrum.

Ethyl (diethoxyphosphinyl)propynoate is stable in refluxing toluene. It undergoes essentially quantitative Diels-Alder additions to a variety of dienes (Table) as monitored by ³¹p nmr. For example, reaction of (2; 1.0 g) with cyclohexa-1,3-diene (1.73 g) under reflux was complete after 2 h. Distillation then gave the adduct (4), b.p. 160 °C at 0.05 mmHg (76%). Competition experiments for 1,3-diphenylisobenzofuran showed (2) to be less reactive than dimethyl acetylenedicarboxylate by a factor of about 5.

Reaction of $(\underline{2})$ with 2-substituted butadienes, e.g. isoprene and 2-chlorobutadiene, gave equal amounts of the possible isomeric adducts, but the regionselectivity of Diels-Alder additions to 1-substituted butadienes was high. As shown by ^{31}P and ^{1}H nmr, piperylene and trans-1-phenylbutadiene gave only one isomer, the adducts $(\underline{3}; R=Me)$ and $(\underline{3}; R=Ph)$ respectively. This high regionselectivity is analogous to that reported for methyl propynoate 2 and for ethyl phenylsulphonylpropynoate. 3

As expected, (2) undergoes addition to a range of 1,3-dipoles, e.g. methyl azidoacetate gave a 4:7 ratio of the triazoles (5) and (6).

$$(\underline{2}) + N_3 CH_2 CO_2 Me$$

$$(\underline{5})$$

$$(EtO)_2 \stackrel{\text{CO}_2Et}{\longrightarrow} CO_2 Et$$

$$N_N N CH_2 CO_2 Me$$

$$+ N_N N CH_2 CO_2 Me$$

$$(\underline{6})$$

$$(\underline{6})$$

We thank S.E.R.C. for a studentship.

- 1. Addition of bromine to ethyl propynoate in ${\rm CCl}_4$ at 60-70 $^{\rm O}{\rm C}$ gives entirely the ${\rm Z}$ -isomer.
- 2. A.S. Onishchenko, "Diene Synthesis". Israel Program for Scientific Translations Ltd., Jerusalem, 1964, p137-138.
- 3. Ming Shen and A.G. Schultz, Tetrahedron Letters, 1981, 22, 3347.
- J. Diekmann, J. Org. Chem., 1963, 28, 2880; D.M. Lemal, E.P. Gosselink, and S.D. McGregor,
 J. Amer. Chem. Soc., 1966, 88, 582.

TABLE Diels-Alder Reactions of Ethyl (Diethoxyphosphinyl)propynoate =				
	DIENE	Molar Ratio Diene: (<u>2</u>)	Conditions	ADDUCT O
1.	trans-1-phenylbuta-1,3-diene	5:1	125°; 1h	R CO ₂ Et
				(<u>3;</u> R=Ph) 0 IIb
2.	furan	5:1	reflux; 6d	P(OEt) ₂ ^b co ₂ Et
3.	1,3-diphenylisobenzofuran	1:1	reflux; 4h	Ph P(OEt) ₂ ^C
	(ether)			Ph CO ₂ Et
4.	cyclohexa-1,3-diene	5:1	100°; 2h	P(OEt) ₂ ^b CO ₂ Et
		5.3	120°; 1.5h	(<u>4</u>) 0 P(OEt)2 ^d
5.	trans-1-acetoxy-1,3-butadiene	5:1	120 ; 1.51	Cl co ₂ Et
6.	C1 (OMe) ₂ ref. 4	1:1	150°; 3d	C1 CO ₂ Et ² C1 P(OEt) ₂
	C1			CO ₂ Me

- $\frac{a}{b}$ Without solvent except in 3. $\frac{b}{b}$ Isolated after silica gel chromatography.
- $\stackrel{\underline{c}}{=}$ Crystallised from EtOAc-petrol. $\stackrel{\underline{d}}{=}$ Initial adduct not detected. $\stackrel{\underline{e}}{=}$ Structure based on symmetry of product from (EtO) $_2$ PC $\stackrel{\underline{c}}{=}$ CCCO $_2$ Me as shown by 13 C and 1 H nmr.

(Received in UK 14 April 1982)